Utilisation d’une bibliothèque d’ordonnances pré-rédigées dans un hôpital américain

Malgré plusieurs articles qui décrivent l’impact positif d’ordonnances pré-rédigées (order sets) utilisées seules ou comme partie d’un groupe d’interventions pour améliorer la prise en charge de divers problèmes, peu de publications détaillent les systèmes en place pour gérer et diffuser ces ordonnances.

L’article présenté ici est un « abrégé » (plutôt long) présenté au congrès de l’American Medical Informatics Association. Le texte complet est disponible gratuitement sur PubMed Central, ce qui est rare pour le contenu de l’AMIA.  L’article décrit la mise en place du logiciel Cerner EHR dans une organisation de soins de santé américaine située en Utah. L’organisation est énorme et englobe 22 hôpitaux, 1 hôpital pédiatrique, 185 cliniques externes, 18 cliniques communautaires et un plan d’assurance. Près de la moitié des résidents de l’Utah sont suivis dans cette organisation. Le logiciel mis en place permet le développement d’ordonnances pré-rédigées et permet à chaque prescripteur de développer des ordonnances personnalisées dérivées des modèles institutionnels. Suite à l’implantation du système, un tableau de bord d’indicateurs a été développé pour permettre l’analyse de l’utilisation des ordonnances pré-rédigées et pour fournir de la rétroaction à leurs auteurs. Les données d’utilisation de 12 mois, de février 2015 à février 2016, ont été extraites.

Les fonctionnalités du tableau de bord étaient entre autres:

  • Afficher les volumes d’utilisation de chaque ordonnance, découpés en utilisation du modèle de base et de variantes personnalisées.
  • Afficher l’utilisation d’une ordonnance en fonction du temps, découpé par version et par modèle.
  • Détailler les versions de chaque ordonnance, incluant les dates et heures de versions, les auteurs, ainsi que les différents changements dans chaque modèle standard et dans chaque version personnalisée.
  • L’évolution schématisée graphiquement des éléments individuels inclus dans l’ordonnance pré-rédigée, notamment ce qui a été ajouté, retiré ou modifié.

Dans les données d’une année qui ont été extraites, les auteurs ont constaté que 107 auteurs avaient développé plus de 1400 modèles standards d’ordonnances pré-rédigées, cependant moins de la moitié de ce qui avait été développé avait été réellement utilisé. Près de 300 000 instances d’utilisation ont été collectées. Ils ont constaté que différents départements avaient une approche très différente, par exemple le département de cardiologie ne permettait pas la personnalisation de ses modèles tandis que d’autres départements encourageaient cette pratique. Les utilisateurs avaient tendance à créer des modèles personnalisés des ordonnances pré-rédigées simplement pour en changer le nom à quelque chose qu’ils étaient plus susceptibles de retrouver facilement, plutôt qu’à en changer le contenu. En effet, 80% du volume d’ordonnances générées à partir de ces documents était conforme au contenu standard. Une fonctionnalité utile du logiciel était que les mises à jour du modèle standard étaient poussées aux modèles personnalisés, diminuant ainsi le risque d’utiliser une ordonnance désuète. Les auteurs considèrent que leur tableau de bord s’est avéré utile pour améliorer le développement des ordonnances pré-rédigées. Ils citent en exemple les ordonnances post-partum qui ont été modifiées suite à l’examen des données d’utilisation.

Il est cependant souligné que la non utilisation d’une grande quantité d’ordonnances pré-rédigées est préoccupante, car un formulaire non utilisé pourrait devenir désuet ou même diverger de nouvelles recommandations cliniques. Les auteurs suggèrent de considérer la suppression d’ordonnances pré-rédigées inactives pour un certain temps et pour réduire les ressources nécessaires au maintien de la bibliothèque.

Je trouve cet article intéressant car il décrit bien les problèmes vécus dans la gestion d’une grande bibliothèque d’ordonnances pré-rédigées, et il montre bien comment l’informatisation d’un tel processus peut avantageusement inclure un volet de collecte de données, d’indicateurs et d’analytique.

Laisser un commentaire

Entrer les renseignements ci-dessous ou cliquer sur une icône pour ouvrir une session :

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.