Détection de noms de médicaments similaires

Je parlais récemment d’affichage de noms de médicaments dans les systèmes informatiques. Les difficultés rencontrées avec cet affichage découlent en partie des noms de médicaments similaires, désignés en anglais par l’acronyme LASA (Look-alike, sound-alike). Un nouvel article dans le dernier AJHP discute de ce problème. Les auteurs ont développé un algorithme permettant d’identifier les erreurs potentielles liées à des paires de médicaments aux noms similaires. L’article se concentre sur la confusion entre la cyclosérine et la cyclosporine, deux médicaments précédemment identifiées comme ayant un nom similaire à risque de confusion et inclus sur la liste des « TALLman » de l’ISMP.

Un algorithme d’identification des paires de médicaments à risque a été développé à l’aide de 3 critères extraits du dossier électronique:

  1. Le médicament prescrit n’était pas justifié par un diagnostic actif.
  2. Un autre médicament au nom similaire (selon un certain seuil) existe.
  3. L’indication de cet autre médicament correspond à un diagnostic actif ou est présent dans l’historique de médicaments.

Afin d’exécuter cet algorithme, une banque d’indications des médicaments a été obtenue d’un fournisseur commercial, les données diagnostiques du dossier électronique ont été extraites (les codes ICD-9) et les 10 dernières années de prescriptions électroniques dans l’institution des auteurs ont été analysées en fonction de ces données. Un traitement extensif des données a été nécessaire pour réaliser l’analyse et est détaillé dans le texte. La similairité des noms de médicaments a été évaluée à l’aide de l’algorithme BI-SIM, un score de 0 à 1 caractérisant la similarité de deux chaînes de texte qui a déjà été étudié pour prédire le risque de confusion entre les médicaments. La paire cyclosporine/cyclosérine a un score de 0,83.

Toutes les prescriptions de cyclosérine de 2008 à 2014 ont été extraites. 16 ordonnances de cyclosérine ont été identifées, et les dossiers ont été revus manuellement. De celles-ci, 11 étaient des erreurs de confusion avec la cyclosporine. Dans 10 cas, la prescription a été faite mais changée par la suite. Dans un cas, il semble que le patient ait reçu de la cyclosérine, mais à la seule analyse du dossier cela demeurait incertain. Il est à souligner que ces deux médicaments étaient identifés par une nomenclature « TALLman » dans le dossier électronique, ce qui remet encre une fois en doute l’efficacité de cette mesure.

Les auteurs concluent en soulignant qu’une alerte basée sur l’indication aurait probablement permis d’éviter ces erreurs, en alertant le prescripteur au fait que la cyclosérine, un médicament pour la tuberculose, et rarement utilisé, n’était pas indiqué pour les patients en question. Cependant, ils mentionnent aussi qu’il est ardu de mettre en place un tel algorithme De leur propre expérience, une grande quantité de travail manuel a été nécessaire pour d’abord établir la liste d’indications par médicament à partir d’une banque de données commerciales, puis pour relier les diagnostics du dossier électronique à ces indications, sachant que les données extraites des dossiers électroniques sont hautement variables.

4 réflexions sur “Détection de noms de médicaments similaires

Laisser un commentaire

Entrer les renseignements ci-dessous ou cliquer sur une icône pour ouvrir une session :

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google+

Vous commentez à l’aide de votre compte Google+. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.