Revue systématique de l’effet de la prescription électronique sur les erreurs médicamenteuses

Je vous parlais au début 2019 d’une revue systématique sur les effets de la prescription électronique avec aide à la décision. Cette revue avait inclus des articles allant jusqu’à 2016. Une nouvelle revue systématique avec méta-analyse sur le même sujet a été publiée au mois d’août.

Les auteurs de cette nouvelle revue ont révisé la littérature de 2007 à 2017 (inclusivement) et ont inclus les études randomisées ou prospectives chez les patients hospitalisés, à l’urgence ou en soins de longue durée. Les études incluses devaient avoir comme intervention une « stratégie de prescription électronique », définie comme de l’aide à la décision seule ou de la prescription électronique avec ou sans aide à la décision, comparée à un contrôle sans intervention électronique. Je trouve que cette définition est très large, l’aide à la décision seule (« standalone ») est une chose très différente de la prescription électronique (« computerized provider order entry ») intégrée à un dossier électronique. Les études rétrospectives, comparant deux modalités électroniques, avec plusieurs interventions à la fois, ou ciblant les patients externes, ont été exclues. Les issues évaluées étaient les erreurs médicamenteuses et les événements indésirables touchant le patient (« patient harm »).

Une stratégie de recherche systématique, incluant la sélection des articles et l’extraction de leur contenu de façon indépendante par deux chercheurs, a été menée. Les recommandations GRADE ont été suivies pour coter les articles. En fonction de critères prédéterminés, certains articles ont été inclus dans une méta-analyse pour des issues choisies, avec évaluation de l’hétérogénéité et du biais de publication.

2832 études ont été retrouvées, desquelles 38 ont été incluses après tout le processus de sélection, provenant de 12 pays. Le tableau 1 de l’étude décrit les études incluses. À la lecture de ce tableau, on constate au premier coup d’œil que les articles inclus sont extrêmement disparates. Parmi 11 études randomisées, 7 avaient comme sujet le contrôle automatisé de la glycémie avec une perfusion d’insuline aux soins intensifs ou en post-chirurgie, une ciblait le contrôle glycémique chez les diabétiques de type 2, une était à propos du dosage de mycophénolate après une transplantation rénale, une visait le choix d’antibiotiques empiriques en sepsis et une était à propos de la réhydratation chez les enfants avec vomissements ou diarrhée. Aucune étude avec un devis randomisé n’était donc réellement à propos de l’effet de la prescription électronique comme tel, il s’agissait toutes d’études portant un outil d’aide à la décision électronique dans un contexte clinique très précis. Les 11 études randomisées ont rapporté des données sur les événements indésirables touchant le patient et aucune n’a rapporté de données sur les erreurs de médicaments.

De même, parmi les 27 études non randomisées, seules 6 études chez l’adulte et 4 en pédiatrie portaient réellement sur l’effet d’un système de prescription électronique. Les autres portaient sur des outils d’aide à la décision dans le choix d’antibiotiques (8), le contrôle de la douleur (2), la détection d’interactions médicamenteuses (1), l’ajustement en insuffisance rénale (1), les nausées et vomissements post-opératoires (2), le bilan comparatif des médicaments (1), le traitement de la pneumonie (1) et la sédation (1). 18 de ces études ont rapporté des données sur les événements indésirables et 13 des données sur les erreurs médicamenteuses.

Au total, 10 de 13 études ont rapporté une diminution des erreurs médicamenteuses. La méta-analyse de 11 de ces études a démontré une réduction du risque d’erreur avec un risque relatif de 0.24 (intervalle de confiance 95% 0.13-0.46) avec une grande hétérogénéité et un possible biais de publication. L’effet était plus prononcé dans les études récentes.

En ce qui a trait aux événements indésirables, les événements rapportés étaient la mortalité, la durée de séjour, l’hypoglycémie, l’échec de traitement, l’hospitalisation et la réadmission, le délai de traitement, le contrôle de la douleur, les nausées et vomissements post-opératoires et les infections. On voit donc qu’il s’agit d’issues précises tirées des contextes cliniques des études incluses et qu’il ne s’agit pas d’issues évaluées à travers un grand nombre d’études. Ceci compromet la capacité de tirer des conclusions généralisables à la prescription électronique ou à l’aide à la décision dans son ensemble à partir de ces données. Les auteurs ont quand même réalisé une méta-analyse sur les différentes catégories d’événements indésirables mais rien de particulier n’en n’est ressorti hormis une diminution des « adverse drug events » avec un risque relatif à 0,52 (intervalle de confiance 95% 0,40-0,68), mais sur la base de seulement deux études. La définition de précise de cette issue n’est pas bien décrite, les auteurs semblent se baser sur la catégorisation des études incluses telle quelle, laquelle n’est pas expliquée.

Je crois que cette étude, malgré une méthode très solide et une intention louable, souffre d’avoir mal défini le type d’intervention qu’elle souhaitait évaluer. On a l’impression que les auteurs souhaitaient examiner d’un seul coup l’effet de n’importe quelle intervention électronique touchant à la prescription de médicaments ou à l’aide à la décision. Malheureusement, comme les auteurs le mentionnent dans leur discussion, les publications sont hétérogènes. Beaucoup d’études se focalisent sur un contexte clinique précis avec une intervention spécifique à ce contexte, et ceci ne produit pas de données pouvant être mises en commun avec d’autres interventions ou d’autres contextes.

Dans le contexte de l’aide à la décision, je suis de l’opinion que « l’électronique » est un support pour exposer un clinicien à une intervention (par exemple une alerte, une recommandation, une liste de choix filtrée, etc.) et qu’on ne peut pas évaluer l’effet de n’importe quelle intervention amenée via ce support comme un tout, en tout cas pas pour une variété de situations cliniques en même temps. J’ai déjà parlé abondamment sur ce blogue de l’importance de bien paramétrer les systèmes d’aide à la décision et en particulier les alertes, et je crois que la recette gagnante demeure d’afficher la bonne information, à la bonne personne, au bon moment et par le bon support.

En ce qui a trait à la prescription électronique, je pense qu’il est assez clair que cette technologie permet de réduire certains types d’erreurs, et, comme d’autres revues sur le sujet ont montré, que d’autres types d’erreurs peuvent survenir en fonction des caractéristiques du système mis en place.

L’article présenté ajoute à la masse de données qui suggère un effet bénéfique des technologies d’aide à la décision et de prescription électronique sur les erreurs médicamenteuses, néanmoins il est difficile d’attribuer l’effet observé à l’un ou l’autre considérant l’hétérogénéité des études incluses et la définition trop large de l’intervention étudiée.

Laisser un commentaire

Entrer les renseignements ci-dessous ou cliquer sur une icône pour ouvrir une session :

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l’aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l’aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.