Machine learning non supervisé pour la détection d’anomalies dans les prescriptions de médicaments

Je crois beaucoup au potentiel de l’intelligence artificielle pour aider le pharmacien dans son travail de validation d’ordonnances. Le sujet n’est certainement pas parmi les plus populaires dans la littérature sur les applications de l’intelligence artificielle en santé mais on voit que l’analyse d’ordonnances de médicaments revient régulièrement dans les nouvelles publications. Un nouvel article d’une équipe du Brésil discute de ce sujet.

L’objectifs des chercheurs était d’identifier des combinaisons médicament-voie-fréquence atypiques (outliers) de manière non-supervisée, c’est-à-dire sans que les données fournies au modèle n’indiquent à l’avance si une ordonnance est atypique ou non. À cette fin, un nouvel algorithme a été développé permettant de représenter les ordonnances de chaque médicament à l’aide d’un vecteur bi-dimensionnel incorporant la dose et la fréquence. Un graphe est construit à partir des prescriptions d’un médicament ainsi représentées, l’objectif étant d’attribuer à chaque prescription un score de « centralité » indiquant à quel point la combinaison dose-fréquence est commune par rapport à l’historique des prescriptions de ce médicament. Après analyse par l’algorithme, un seuil attribué à chaque médicament permet de séparer les combinaisons dose-fréquence typiques de celles atypiques.

Le modèle a été développé et testé sur des données d’un hôpital brésilien collectées entre janvier et septembre 2017 à partir du prescripteur électronique de l’établissement. 2 millions d’ordonnances pour 16 000 patients sont incluses dans la banque de données. Les médicaments sont représentés en nom générique, et les doses et fréquences de médicaments ont été standardisées pour l’analyse. Les médicaments avec moins de 1000 occurrences dans l’historique de prescription ont été exclus. Des doses quotidiennes minimales et maximales ont été extraites de banques de données commerciales sur les médicaments; les médicaments sans ces données ont été exclus de l’analyse.

563 171 ordonnances pour 51 médicaments ont été inclus dans le jeu de données final. La section des résultats de l’article montre des images faciles à interpréter expliquant comment l’algorithme caractérise les combinaisons de dose et de fréquence pour un médicament et où sont les combinaisons atypiques. De même, un échantillon de 150 000 ordonnances pour 21 médicaments est disponible sur le GitHub du projet.

Les limites de doses extraites des banques de données ont été utilisées pour caractériser la performance du modèle pour identifier les surdosages et sous-dosages. L’algorithme développé par les auteurs a été comparé à 5 modèles « standards » pour la détection de outliers. La performance a été analysée à l’aide du score F1, une mesure de classification prenant en compte le fait que les ordonnances atypiques sont bien moins fréquentes que les ordonnances typiques.

Les résultats montrent que l’algorithme proposé par les auteurs offre la meilleure performance, se classant parmi les 3 meilleurs algorithmes pour la détection des dosages atypiques pour 31 des 51 médicaments, avec un score F1 de 0.68. Les méthodes classiques se sont avérées moins performantes sauf les forêts d’isolation avec un classement parmi les meilleurs 3 algorithmes pour 26/51 médicaments et un score F1 de 0.61. L’algorithme s’est aussi avéré plus stable lors de variation de ses paramètres d’entraînement.

Les auteurs notent que leur algorithme était vulnérable à des erreurs de dosage par rapport au choix de produit pharmaceutique, par exemple une prescription d’amlodipine en comprimés de 10 mg pour une dose de 5 mg, alors qu’il existe des comprimés de 5 mg. Ceci semble davantage être un symptôme de la configuration du système (j’en parlais en 2016) qui demande au prescripteur de choisir un produit plutôt qu’une molécule. On note aussi des détections d’atypicité pour des dosages impossibles selon la forme, comme 88 mcg de lévothyroxine avec des comprimés de 100 mcg, ainsi que des vraies détections de dosages atypiques (méropénem 2g une fois par jour, allopurinol 600 mg une fois par jour). Les auteurs notent que les médicament dont le dosage est intrinsèquement plus variable comme le chlorure de potassium oral, ou la carbamazépine par exemple, montraient une performance moins bonne.

Les auteurs indiquent que leur approche ne permet pas la prise en compte des doses en fonction du poids. Ceci affecte la généralisation d’une telle approche. Par exemple, dans un contexte d’hôpital avec une bonne proportion de patients pédiatriques, la plupart des médicaments peuvent être dosés en fonction du poids ou de la surface corporelle en plus de doses fixes pour les patients plus vieux ou les adultes, ce qui complexifie la tâche.

Je trouve cette étude très intéressante car elle rejoint mes propres intérêts de recherche. Je m’intéresse davantage à la détection de médicaments atypiques dans le contexte des autres médicaments d’un patient, tandis que cette étude s’intéresse au dosage d’un médicament en lien avec le médicament lui-même, indépendamment des autres médicaments actifs. Ceci ressemble aux travaux de Allen Flynn. Je trouve un peu étrange que cette nouvelle étude ne cite pas ces publications, qui ont sensiblement un objectif similaire malgré des méthodes un peu différentes. En tout cas, il y a définitivement un besoin pour ces deux volets d’analyse d’ordonnances automatisée, et cette étude est un pas de plus dans la bonne direction.

Une réflexion sur “Machine learning non supervisé pour la détection d’anomalies dans les prescriptions de médicaments

Laisser un commentaire

Entrer les renseignements ci-dessous ou cliquer sur une icône pour ouvrir une session :

Logo WordPress.com

Vous commentez à l’aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l’aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.