Revue systématique sur la prescription électronique avec aide à la décision

Cette revue systématique est parue dans l’AJHP du mois de décembre. Les auteurs sont espagnols. L’article commence en parlant du livre To Err Is Human, donc il a droit à des points bonus. L’objectif de la revue était de cerner l’effet de la prescription électronique avec aide à la décision sur les erreurs médicamenteuses et les événements indésirables liés à la médication. Les auteurs souhaitaient spécifiquement sélectionner des études de bonne qualité et éviter d’agréger des données hétérogènes dans le cadre de leur revue.

La recherche a inclu les articles répertoriés sur Medline, Embase, CINAHL et Cochrane de 1995 à 2016, ainsi que des références d’autres articles de revue et banques de données. Les articles ont été d’abord filtrés sur la base du titre et de l’abstract puis évalués selon des critères d’inclusion systématiques et fondés sur des recommandations solides. Les études devaient concerner des patients hospitalisés, et être de devis contrôlé ou pré et post avec période de « washout » pour éviter l’effet d’une courbe d’apprentissage. Les études contrôlées devaient avoir comme contrôle la prescription manuscrite. Les études pré et post devaient être collectées prospectivement, donc les études avec contrôles historiques étaient exclus.

Point important, la définition de prescription électronique était celle où le prescripteur entrait les ordonnances dans un ordinateur, avec un système d’aide à la décision et avec transmission électronique des ordonnances à la pharmacie. Ce point est important puisqu’il existe des systèmes sans interface avec la pharmacie, où une retranscription manuelle des ordonnances est nécessaire, et les conclusions sur la sécurité de l’utilisation des médicaments sans interface entre le système de pharmacie et le prescripteur électronique pourraient être très différentes.

16 526 articles ont été évalués sur la base du titre et de l’abstract, et 188 ont été retenus pour évaluation. 19 ont été inclus. Les 19 fournissaient des données sur les erreurs médicamenteuses et 7 sur les événements indésirables. Une étude était randomisée et contrôlée, 3 étaient contrôlées et le reste étaient de type pré et post. La section des résultats détaille très bien la qualité et la méthodologie des études, je ne répéterai donc pas cela ici et je vous encourage à lire l’article.

En résumé, il a été impossible d’agréger les données sur les erreurs médicamenteuses puisqu’il y avait trop d’hétérogénéité dans les définitions utilisées. Cependant, il ressort que la prescription électronique avec aide à la décision, interfacée avec la pharmacie, était associée à une diminution statistiquement significative de 71% des erreurs à l’étape de prescription. En ce qui a trait aux autres étapes (validation, dispensation, administration), aucune différence significative n’a été observée quand aux erreurs. Les auteurs commentent cependant qu’il est clair que la prescription électronique aide à diminuer les erreurs à toutes les étapes du circuit du médicament en diminuant les erreurs liées à l’interprétation de prescriptions mal écrites, et en facilitant l’intégration des prescriptions avec les autres technologies utilisées pour les médicaments, comme les pompes et les cabinets automatisés.

Les auteurs commentent sur la diminution de certains types d’erreurs, comme les erreurs de voie d’administration, lorsque les systèmes d’aide à la décision sont capables d’empêcher des choix illogiques. Cependant, les erreurs d’autres types comme celles liées aux allergies ne sont pas nécessairement faciles à réduire avec la prescription électronique, car la qualité de la documentation des allergies dans les dossiers électroniques est variable. De même, le problème des alertes intempestives (alert fatigue) est majeur et contribue à la mauvaise efficacité des systèmes d’aide à la décision pour certains types d’erreurs.

Enfin, les auteurs commentent sur les erreurs causées par les systèmes de prescription électronique, et citent des articles de revue dont j’ai déjà parlé sur les causes de ces erreurs.

Revue systématique sur les erreurs causées par la prescription électronique

Une revue systématique, parue fin 2017 dans le International Journal of Medical Informatics, s’est intéressée aux erreurs médicamenteuses causées par la prescription électronique et à leurs mécanismes. Les données de cette revue viennent compléter d’autres que j’ai déjà présentées, dont deux par un autre groupe de chercheurs chez l’adulte et en pédiatrie.

Les chercheurs ont effectué une revue de Medline, Embase, du registre Cochrane et d’autres références de 1982 à août 2017 selon divers mots-clés. Ensuite, les articles sélectionnées ont été revus et filtrés selon une méthode systématique et appuyée sur des lignes directrices. Les auteurs ont cherché à conserver uniquement les études ayant évalué quantitativement les erreurs, avec une analyse explicite du rôle de la prescription électronique, et avec une description de la typologie de l’erreur. Les études qualitatives, ciblant un seul type spécifique d’erreurs, ciblant des logiciels spécialisés comme pour la chimiothérapie, et les études de simulation, ont été exclues.

2086 articles ont été identifiés et 14 ont été inclus dans l’analyse. 7 étaient des études prospectives, 3 rétrospectives et 4 étaient des analyses de bases de données d’événements indésirables. 7 venaient de l’Europe, 4 des États-Unis, 2 d’Australie et 1 de Singapour. Les études était de qualité assez bonne, avec la moitié rapportant plus de 7 critères de haute qualité sur 14.

Les erreurs les plus fréquemment rapportées étaient des erreurs  de dose ou de sélection de médicaments. Les mécanismes rapportés étaient:

  • Liées à l’ergonomie:
    • Sélection erronée dans un menu déroulant
    • Erreur de frappe
    • Entrave à la vision de la prescription complète
    • Plus d’un prescripteur dans la même ordonnance
  • Liées aux alertes:
    • Absence d’alerte ou mauvaise configuration
    • Contournement d’alertes liée à la désensibilisation (alert fatigue)
  • Liée aux particularités du système
    • Obligation de spécifier une date de fin même pour traitements chroniques
    • Incapacité d’inscrire une ordonnance complexe (par exemple sevrage de corticostéroïdes)
  • Mauvais paramétrage du système
    • Paramètres par défaut inadéquats
  • Mauvais usage du système
    • Texte libre contradictoire avec champs dédiés pour la même information
    • Modification erronée d’une prescription existante
    • Absence de rappels pour ordonnances importantes
    • Incapacité de consulter l’information nécessaire lors de la prescription
    • Fonctionnalités du logiciel mal adaptées (par exemple option de dire qu’un patient prend ses médicaments lui-même alors que ce n’est pas le cas, ordonnance conditionnelle mal configurée)

Les points soulevés dans cet article recoupent largement ceux dont j’ai parlés dans des blogues précédents, comme quoi la littérature commence à faire ressortir des points cruciaux pour prévenir les erreurs de prescription électronique. Cependant, je trouve que les auteurs se concentrent un peu trop sur des fonctionnalités très spécifiques à des systèmes précis. Par exemple, ils discutent longuement d’une boîte pour indiquer qu’un patient prend un médicament lui-même, alors que ceci n’est pas inhérent à la prescription électronique elle-même, mais plutôt à un système particulier où cette option est mal conçue.

Cependant, je trouve que l’article est quand même très bon et que les points qui y sont soulevés devraient faire partie de ce qui est évalué pour prévenir les erreurs lors de l’implantation de la prescription électronique.

Lignes directrices ASHP-PPAG sur les services et soins pharmaceutiques en pédiatrie

Le dernier numéro de l’AJHP contenait cet article, qui découle d’un effort conjoint de l’ASHP et du PPAG pour décrire la prestation de services et de soins attendue d’un département de pharmacie dans une institution desservant des patients pédiatriques. Le document comporte des points couvrant l’ensemble des activités d’un département, incluant notamment la distribution des médicaments, la validation des ordonnances, les préparations stériles et non stériles, la recherche, les soins aux patients, etc. Je vous présente ici quelques points liés aux technologies.

Dans la section des infrastructures, on mentionne qu’un système d’information pharmacie doit être utilisé et devrait être interfacé avec les autres systèmes d’information de l’établissement, notamment:

  • La prescription électronique
  • L’administration des médicaments assistée par code-barre
  • Le dossier patient électronique (comprenons le DCI Cristal-Net dans le contexte québécois)
  • Le système de facturation (comprenons au Québec le système de tarification à l’activité qui ne manquera pas d’arriver)

Les fonctions devant être supportées par des outils technologiques sont:

  • L’accès au dossier patient
  • La documentation des activités
  • La tenue de dossiers et de profils pharmacologiques
  • La gestion d’inventaire
  • La tarification
  • La prescription
  • L’aide à la décision
  • L’obtention d’information sur les médicaments.

On mentionne qu’un pharmacien possédant des compétences en pédiatrie devrait être impliqué dans le développement et la maintenance des ordonnances pré-rédigées et des références, notamment des doses, disponibles dans les systèmes.

Dans la section spécifique à la technologie, on décrit les technologies de pharmacie (pharmacy HIT) comme devant être intégrées aux systèmes cliniques et financiers de l’institution et que les décisions concernant ces systèmes devraient inclure le département de pharmacie comme partie prenante.

Les logiciels de prescription électronique et d’aide à la décision devraient être adaptés à la pédiatrie, personnalisables, et comprendre au minimum la prise en charge des doses selon l’âge, le poids ou la surface corporelle avec des doses maximales, la détection d’allergies ou d’interactions. Les ordonnances pré-rédigées de mêmes que les « order sentences » (les phrases d’ordonnances non incluses dans une ordonnance pré-rédigée complète) devraient être révisées par le département de pharmacie. Le département de pharmacie devrait participer à la gouvernance des systèmes d’aide à la décision. Les paramètres de ces systèmes impactant les services du département de pharmacie et les interventions mises en place devraient faire l’objet d’un suivi post implantation.

L’ensemble des technologies liées au circuit du médicament (cabinets, carrousels, robots, etc.) devraient prendre en charge les particularités des médicaments pédiatriques et des technologies comme le code-barres, la traçabilité des médicaments et les logiciels d’assistance à la production stérile devraient être considérés.

La feuille d’administration des médicaments devrait être électronique et directement interfacée ou intégrée au système d’information pharmacie, et devrait utiliser une vérification des médicaments par RFID ou code-barres avant l’administration.

Les pompes à perfusion devraient être choisies avec l’aide du département de pharmacie et prendre en charge les doses pédiatriques. Les bibliothèques devraient être sous la responsabilité d’un pharmacien avec des compétences en pédiatrie et comprendre des limites contournables et non contournables.

Les sections subséquentes ajoutent des particularités, notamment sur la terminologie dans la prescription électronique, sur l’utilisation des profils pharmacologiques pour la dispensation de médicaments à l’aide des cabinets automatisés; ce sont des points relativement bien connus et recoupant d’autres références.

Je trouve que cet article donne un bon tour d’horizon des meilleures pratiques pour l’ensemble d’un département de pharmacie offrant des services pédiatriques, et offre un bon sommaire des technologies disponibles et de la manière de les mettre en place. Les pratiques décrites font écho aux lignes directrices d’autres organismes, notamment l’ISMP. Bref, cet article est un incontournable.

Données sur les pharmacies d’hôpitaux américaines 2016

Je vous parle aujourd’hui d’un sondage publié récemment dans l’AJHP sur les pharmacies d’hôpitaux aux États-Unis, réalisé en 2016 et décrivant surtout les processus de prescription et transcription d’ordonnances. Il s’agit d’une partie du sondage national des pharmacies d’hôpitaux de l’ASHP; la méthode de ce sondage est décrite dans l’introduction de l’article. Les données publiées ici complètent celles publiées l’année dernière sur les volets de surveillance de la pharmacothérapie et de suivi des patients. À noter cependant que plusieurs données se recoupent.

Contrairement au sondage québécois, le sondage américain ne cible pas tous les hôpitaux et utilise un échantillonage. 392 hôpitaux parmi les sondés ont répondu, représentant un taux de réponse de 30%, et les répondeurs n’étaient pas statistiquement différents des non-répondeurs. Voici quelques faits saillants du sondage:

  • 99,1% des hôpitaux avaient un dossier électronique au moins partiellement en place, dont 43,3% avec un système complètement électronique sans papier (comparativement, ces chiffres étaient 97,5% et 37,5% en 2015 aux USA, je ne trouve pas de données québécoises claires sur ce chiffre).
  • 95,6% des hôpitaux ont un système de prescription électronique avec aide à la décision (comparativement à 84,1% aux USA en 2015, et au Québec 7% en 2014 et 5% en 2012).
  • Les ordonnances sont transmises électroniquement (en données numériques) à la pharmacie dans 90,7% des hôpitaux, 4,2% des hôpitaux numérisent des ordonnances papier, 2,8% utilisent encore le fax et 2,3% utilisent le transport manuel d’ordonnances papier. Comparativement, au Québec, la seule donnée que je connaisse est un sondage présenté comme affiche au congrès de l’APES 2016 qui a montré l’utilisation d’ordonnances numérisées dans 51% des hôpitaux, contre 26% qui utilisaient le fax, 21% des ordonnances papier et 2% un prescripteur électronique.
  • Au niveau de la validation d’ordonnances, 51,6% des hôpitaux utilisent des fonctions de validation automatisée. Parmi-ceux-ci, 58,2% utilisent des fonctions par département (p.ex. urgence), 40,3% des médicaments spécifiques dans certains départements (p.ex. médicaments pour la douleur à l’urgence), et 12% pour des médicaments spécifiques à travers l’hôpital (p.ex. vaccins, médicaments de soins de confort).
  • 92,6% des hôpitaux utilisent la vérification de l’administration des médicaments avec le code-barre (comparativement à 93,7% aux USA en 2015, et aucun hôpital au Québec en 2012 ou 2014).
  • Pour l’élaboration de politiques de prescription et de gestion du formulaire, 75% des hôpitaux font de l’évaluation comparative des médicaments avant l’inscription au formulaire, élaborent des lignes directrices, font de la substitution thérapeutique, délèguent les choix de produits et de dose aux pharmaciens, et font des revues d’utilisation. Deux tiers des hôpitaux restreignent la prescription de certains médicaments à certains praticiens, et environ la moitié utilisent des données pharmacoéconomiques dans leur évaluation.

L’utilisation de dossiers électroniques offre des nouvelles possibilités reliées à la gestion du formulaire et des ordonnances:

  • Trois quarts des hôpitaux affichent uniquement les médicaments au formulaire lors de la prescription.
  • Environ la moitié des hôpitaux utilisent des fonctions d’arrondissement ou de standardisation de doses lors de la prescription (sans doute pour faciliter la correspondance aux médicaments produits en lot à la pharmacie).
  • La moitié des hôpitaux offrent des liens vers de l’information sur les médicaments lors de la prescription, et offrent des alternatives lors d’une tentative de prescription d’un médicament hors formulaire.
  • Un peu plus d’un tiers des hôpitaux envoient certaines ordonnances à un autre service pour approbation (par exemple antibiotiques à usage restreint) et incluent un support décisionnel lié à l’optimisation de l’utilisation des antimicrobiens.
  • Un tiers des hôpitaux limitent l’entrée de médicaments hors formulaire aux pharmaciens.

En ce qui a trait aux fonctions de prescription hors formulaire, il est à noter que ce sont en général les plus gros hôpitaux qui ont des politiques plus strictes sur le contrôle du formulaire et les possibilités de prescription.

Les éléments liés à la pratique clinique du pharmacien sont:

  • 56,9% des hôpitaux requièrent la documentation électronique des recommandations et des notes du pharmacien dans les dossiers médicaux.
  • 89,9% des hôpitaux permettent aux pharmaciens de demander des tests de laboratoire et dosages de médicaments.
  • 86,8% des hôpitaux permettent aux pharmaciens d’écrire des ordonnances, 7,2% permettent aux pharmaciens de prescrire (sélection, initiation, suivi et ajustement du médicament), et 92,8% des hôpitaux permettent aux pharmaciens de modifier ou initier des médicaments selon un protocole.
  • 64% des hôpitaux collectent des données pour démontrer les effets des interventions des pharmaciens; ces données incluent surtout le type d’intervention, le temps passé sur ces interventions, et l’impact de ces interventions sur les coûts.

D’autres données sont fournies dans le sondage, je vous invite à lire le texte complet car elles sont plus difficiles à résumer. Celles-ci incluent:

  • Les services fournis par les pharmaciens au congé et le lien avec les soins en communauté et les pharmacies communautaires.
  • Les services offerts en clinique ambulatoire.
  • Le paiement des services pharmaceutiques.
  • Le lien avec les pharmacies de spécialité.
  • Les données de ressources humaines (équivalents temps plein, postes occupés, diplômes et certifications).
  • Les activités des techniciens en pharmacie.

Biais cognitif lié à l’aide à la décision

Les systèmes d’aide à la décision gagnent en popularité avec l’informatisation croissante des dossiers médicaux, en particulier dans le contexte de la prescription électronique. Il existe également de tels outils intégrés aux systèmes d’information pharmacie, notamment pour la détection d’interactions médicamenteuses. Néanmoins, l’impact clinique de tels systèmes est sujet à débat, en particulier quand on constate à quel point les alertes générées peuvent être de pertinence clinique douteuse, ou bien lorsque des problèmes importants ne sont pas détectés.

Cette étude avait pour objectif d’évaluer la présence de biais cognitif induit par les systèmes d’aide à la décision, notamment l’omission de problèmes en absence d’alerte, les interventions inappropriées en présence d’alertes inexactes, et l’impact des interruptions et de la complexité des tâches sur ces éléments.

120 étudiants en médecine dans les deux dernières années de leur formation dans des universités australiennes ont participé à l’étude.  Chaque participant devait compléter des scénarios de simulation les exposant à neuf situations, soit une situation contrôle sans aide à la décision, une aide à la décision adéquate et une aide à la décision inadéquate, chacune en condition normale, en présence d’interruptions et en présence d’une tâche plus complexe. Durant chaque scénario, ils devaient prescrire des médicaments dans un logiciel simulé en présence d’un contexte clinique réaliste. Les scénarios ont été développés et révisés par plusieurs spécialistes, incluant des pharmaciens, afin de s’assurer que ceux-ci étaient adéquats. Notamment, les prescriptions à faire étaient représentatives des responsabilités des étudiants en médecine, et les erreurs à détecter étaient sans ambiguité et clairement à éviter. De plus, les participants étaient avisés que les alertes fournies par le système pouvaient être inexactes ou absentes.

4065 prescriptions ont été faites, comportant 1049 erreurs, incluant les non-prescriptions de médicaments requis. 70% de ces erreurs ont été induites par les scénarios, et 30% ont été jugées comme originant purement des participants. Tous les participants ont fait au moins une erreur.

Comparativement à la situation contrôle, l’aide à la décision adéquate a réduit les erreurs de prescription de 58,8%, alors que l’aide à la décision incorrecte a augmenté les erreurs de prescription de 86,6%. Fait intéressant, les interruptions et la complexité du scénario n’ont pas affecté significativement les biais cognitifs induits par l’aide à la décision. Les résultats complets sont bien plus détaillés, ça vaut la peine de lire le texte complet pour bien en comprendre toutes les nuances.

Les auteurs soulignent que les participants avaient de la difficulté à déterminer si les alertes d’aide à la décision étaient correctes ou non, et même si des omissions avaient lieu.

Je trouve l’article pertinent car il illuste comment l’aide à la décision peut avoir un impact positif si les alertes sont bien paramétrées et adéquates, et comment les effets de cette technologie peuvent être délétères en présence d’omissions ou d’alertes inadéquates. Bien sûr, la tâche de paramétrage d’un système d’aide à la décision est colossale. Bien souvent, la possibilité de personnaliser les alertes, d’en ajouter ou d’en désactiver est inexistante ou limitée, et le nombre d’alertes livrées avec le système est très grand, rendant la révision de celles-ci une par une irréaliste. Plusieurs articles ont décrit les problèmes liés à l’inclusion de nombreuses alertes pour des raisons légales ou administratives, et ont fait des recommandations pour filtrer ce contenu. Encore faut-il avoir les ressources et la capacité technique de le faire.

Détection d’erreurs médicamenteuses par machine learning

Cette étude avait pour objectif de caractériser l’exactitude, la validité et l’utilité clinique d’alertes sur les médicaments établies par un logiciel utilisant le machine learning pour générer automatiquement des alertes à partir d’écarts par rapport à la norme. L’étude a été faite sur les données du Brigham and Women’s Hospital et du Massachusetts General Hospital aux États-Unis.

Le logiciel évalué était MedAware, un logiciel commercial. Ce logiciel utilise le machine learning pour créer 3 types d’alertes sur les médicaments:

  • Des données cliniques hors norme (par exemple prescription de contraceptif pour un enfant garçon).
  • Des données temporellement hors norme (par exemple une diminution des plaquettes chez un patient sous anticoagulant).
  • Un dosage hors norme (le dosage est à l’extrême de la distribution habituelle de dose pour ce médicament ou par rapport à l’histoire du patient).

Tous les patients ayant eu au moins une visite externe (les patients hospitalisés n’étaient pas inclus) entre le 1er janvier 2012 et le 31 décembre 2013 dans un de ces deux hôpitaux. Pour ces patients, les données rétrospectives de 5 ans ont été extraites. À noter, ces données étaient déjà encodées dans un dossier électronique de manière structurée, par exemple les données démographiques, les diagnostics, les listes de problèmes, les médicaments, les allergies, les signes vitaux et les résultats de laboratoires. Cependant, ces données comportaient bien sûr les failles habituelles des données cliniques, c’est-à-dire l’encodage de données en texte libre, dans les mauvais champs, de manière inconstante, etc.

Conformément aux principes du machine learning, les données ont été divisées en deux groupes, un groupe d’apprentissage et un groupe de test. Un échantillon de 300 dossiers a été utilisé pour une validation manuelle des alertes générées par le logiciel. Les paramètres évaluées étaient l’exactitude (l’alerte correspondait-elle réellement aux données encodées ?), la validité (l’alerte était elle adéquate compte tenu des données disponibles partout dans le dossier ?), et l’utilité clinique. Le codage de ces paramètres était effectué par consensus de l’équipe de recherche.

747 985 patients ont été inclus, ayant généré 15 692 alertes dans le groupe de 373 992 patients de test. 29,3% des alertes étaient liées aux données cliniques, 66,8% aux données temporelles et 3,9% au dosage. 23,8% des alertes n’étaient pas valides en raison de problèmes liées aux données, donc 76,2% des alertes étaient valides par rapport aux données encodées. De celles-ci, 56,2% étaient de valeur clinique élevée selon l’équipe de recherche et 18,8% de valeur moyenne.

Les auteurs soulignent dans la discussion la difficulté d’analyser un ensemble de données tiré d’un dossier électronique réel compte tenu de la grande variabilité dans la qualité, la disponibilité et l’encodage des données. La classification de la valeur clinique des alertes est aussi discutable car subjective. Néanmoins, le pourcentage d’alertes cliniquement utile est largement plus élevé que ce que l’on voit en pratique réelle, où la vaste majorité des alertes sont d’une utilité discutable. Il semble que le machine learning soit une avenue intéressante pour les systèmes d’aide à la décision du futur.

Alertes pour la détection des problèmes liés à la pharmacothérapie

Cette étude a été réalisée en Espagne dans un hôpital universitaire de 431 lits, et avait pour objectif de décrire l’utilisation d’un système d’aide à la décision offrant des alertes intégrées au logiciel de prescription électronique et au dossier électronique, pour une détection de problèmes liés à la pharmacothérapie.

Le système offrait la possibilité de programmer des déclencheurs d’alerte liés aux paramètres suivants:

  • L’âge ou le sexe
  • La dose maximale, minimale ou cumulative, les voies d’administration et la durée de traitement
  • Les tests de laboratoire et les indicateurs et scores dérivés (clairance à la créatinine, score MELD, etc.)
  • Les interactions médicamenteuses

À noter, le système n’offrait pas d’alerte pour les allergies.

À chaque jour, les pharmaciens cliniciens de l’hôpital révisaient les alertes générées par le système qui s’affichaient dans le module de pharmacie du dossier électronique. Ces alertes étaient visibles uniquement pour les pharmaciens. Ceux-ci prenaient action selon la pertinence clinique et l’urgence de l’alerte, soit en inscrivant une note au dossier électronique visible pour les autres professionnels ou en intervenant directement auprès de l’équipe clinique. Évidemment, les pharmaciens cliniciens révisaient aussi les profils pharmacologiques de manière indépendante du système d’alertes pour détecter tous les problèmes.

Les données de ce système ont été collectées pour l’année 2012. 83% des médicaments existant dans le système avaient des paramètres d’alertes programmées, pour un total de 7879 alertes potentielles, correspondant à 99,4% des médicaments prescrits durant l’année.  185 131 prescriptions ont été faites avec le système durant l’année, et 3552 interventions pharmaceutiques ont été faites. De celles-ci 79,1% ont été détectées par le système d’alerte et le reste n’ont été détectées que par le pharmacien clinicien. Au moins un problème a été détecté chez 10,7% des admissions et 12,4% des patients.

Au total, 13 833 alertes ont été générées par le système durant l’année, dont 2808 (20%) ont été jugées cliniquement significatives par les pharmaciens cliniciens. 53,2% des alertes pertinentes concernaient le dosage, 25,7% les tests de laboratoire (47% fonction rénale, 38,4% électrolytes), 15,4% les interactions, 4,6% les duplications et 28% les combinaisons.

Le pourcentage d’alertes cliniquement significatives dans cette étude est relativement élevé à 20%, ce qui, je crois, pourrait être lié à la programmation des alertes gérée par les pharmaciens de l’établissement plutôt qu’à l’utilisation d’un système commercial. J’aime bien l’idée d’automatiser, au moins partiellement, la détection des problèmes de pharmacothérapie en assistance au pharmacien clinicien qui doit réviser des profils pharmacologiques, afin de s’assurer de ne rien « échapper » par inadvertence. Néanmoins, ce genre de système doit être bien paramétré pour être cliniquement utile et ne pas contribuer au alert fatigue causé par les systèmes qui génèrent plein d’alertes inutiles.