Lignes directrices de l’ASHP sur la prévention des erreurs médicamenteuses

L’ASHP a publié dans le numéro d’octobre de l’AJHP de nouvelles lignes directrices sur la prévention des erreurs médicamenteuses dans les hôpitaux. Je trouve cet article très important car il amalgame en un seul document beaucoup de pratiques décrites dans de multiples références de sources diverses. Je vous parlerai ici uniquement des aspects qui touchent la technologie mais le reste de l’article comporte des points majeurs dont je ne parlerai pas par souci de temps. Points bonus: l’article débute en citant le rapport To Err is Human: Building a Safer Health System de 1999.

L’article débute en énumérant des stratégies de prévention en vrac. Parmi celles comportant des aspects de technologie on note:

  • L’utilisation de pompes intelligentes
  • La prescription électronique avec aide à la décision
  • L’utilisation du code-barres lors de la préparation, la dispensation et l’administration de médicaments

Ces trois points sont bien simples à nommer ainsi mais chacun comporte son lot de difficultés et de complications, en particulier pour la prescription électronique, et fait l’objet de nombreuses publications et directives d’organismes comme l’ISMP.

Les auteurs mentionnent spécifiquement des stratégies pour réduire les erreurs liés aux médicaments aux noms similaires (Look-alike, sound-alike – LASA):

    L’article détaille ensuite les mesures à prendre à chaque étape du circuit du médicament pour prévenir les erreurs.

    Étapes de sélection et d’approvisionnement

    Un élément majeur à cette étape du circuit du médicament est l’intégration des médicaments choisis et achetés à la technologie en place dans l’établissement. Les choix de formes pharmaceutiques et de concentrations disponibles devraient prendre en considération les possibilités des logiciels qui permettront de gérer, prescrire et administrer ces médicaments.

    Les éléments à considérer incluent

    • Les choix de voie d’administration possibles
    • La nomenclature du médicament et la nécessité de distinction avec d’autres, par exemple avec une écriture TALLman
    • Les interactions médicamenteuses significatives à programmer et tester
    • Les autres alertes pertinentes du médicament (tests de laboratoire, restrictions de prescription, etc.)
    • L’intégration des recommandations de dose à tous les systèmes ainsi qu’aux pompes intelligentes
    • Le besoin d’une ordonnance pré-rédigée
    • La disponibilité dans les cabinets et les alertes spécifiques à la dispensation à partir de cabinets

    On souligne aussi l’importance de la nomenclature du médicament. Celle-ci devrait être standardisée à travers l’ensemble du circuit du médicament, notamment dans le dossiers électronique, le systèmes de pharmacie, les pompes, les cabinets, et prendre en compte dans chaque système la possibilité de confusion avec d’autres médicaments. Le nom générique devrait être favorisé (je commenterais que parfois le nom commercial est nécessaire car le nom générique est incompréhensible pour les professionnels non pharmaciens, par exemple pour des produits qui ne comportent pas de « vrais médicaments » comme les onguents opthalmiques, les gels pour lésions cutanées, les pansements, les produits hydratants en général…). On souligne aussi l’importance de ne pas abrévier le nom d’un médicament, mais ici la technologie est parfois une limite, combien de produits ont une limite de caractères tellement basse que le nom générique du médicament n’entre même pas ?

    Une section de l’article détaille spécifiquement les recommandations pour la dispensation à partir de cabinets, notamment la configuration de la dispensation à partir du profil pharmacologique ou hors profil.

    Étapes de transcription et vérification

    L’article met une emphase sur la vérification des ordonnances de médicaments par un pharmacien, et insiste sur l’importance de ne pas « échapper » les ordonnances rédigées lorsque la pharmacie est fermée. Il faut aussi qu’il y ait une procédure en place pour que les ordonnances rédigées lorsque la pharmacie est fermée puissent être revues si besoin, par exemple avec un pharmacien de garde, un service de télépharmacie, et avec une formation adéquate du personnel sur place durant la nuit pour identifier les situations non conformes ou demandant davantage de vérifications

    Étapes de dispensation et d’administration

    La validation des médicaments peut être assistée par de la technologie, notamment par les code-barres. En particulier, les médicaments qui sont reconditionnées doivent aussi comporter un code-barres. Une procédure doit donc être mise en place pour la génération de ce code-barres et pour encadrer son utilisation.

    Lorsque les cabines sont utilisés, les fonctions de sécurité offertes par le cabinet doivent être connues et revues pour que les meilleures politiques soient mises en place et diminuer le besoin de contournements dans la pratique clinique. De plus, des audits d’utilisation doivent avoir lieu pour identifier les situations problématiques.

    Revue systématique sur les erreurs causées par la prescription électronique

    Une revue systématique, parue fin 2017 dans le International Journal of Medical Informatics, s’est intéressée aux erreurs médicamenteuses causées par la prescription électronique et à leurs mécanismes. Les données de cette revue viennent compléter d’autres que j’ai déjà présentées, dont deux par un autre groupe de chercheurs chez l’adulte et en pédiatrie.

    Les chercheurs ont effectué une revue de Medline, Embase, du registre Cochrane et d’autres références de 1982 à août 2017 selon divers mots-clés. Ensuite, les articles sélectionnées ont été revus et filtrés selon une méthode systématique et appuyée sur des lignes directrices. Les auteurs ont cherché à conserver uniquement les études ayant évalué quantitativement les erreurs, avec une analyse explicite du rôle de la prescription électronique, et avec une description de la typologie de l’erreur. Les études qualitatives, ciblant un seul type spécifique d’erreurs, ciblant des logiciels spécialisés comme pour la chimiothérapie, et les études de simulation, ont été exclues.

    2086 articles ont été identifiés et 14 ont été inclus dans l’analyse. 7 étaient des études prospectives, 3 rétrospectives et 4 étaient des analyses de bases de données d’événements indésirables. 7 venaient de l’Europe, 4 des États-Unis, 2 d’Australie et 1 de Singapour. Les études était de qualité assez bonne, avec la moitié rapportant plus de 7 critères de haute qualité sur 14.

    Les erreurs les plus fréquemment rapportées étaient des erreurs  de dose ou de sélection de médicaments. Les mécanismes rapportés étaient:

    • Liées à l’ergonomie:
      • Sélection erronée dans un menu déroulant
      • Erreur de frappe
      • Entrave à la vision de la prescription complète
      • Plus d’un prescripteur dans la même ordonnance
    • Liées aux alertes:
      • Absence d’alerte ou mauvaise configuration
      • Contournement d’alertes liée à la désensibilisation (alert fatigue)
    • Liée aux particularités du système
      • Obligation de spécifier une date de fin même pour traitements chroniques
      • Incapacité d’inscrire une ordonnance complexe (par exemple sevrage de corticostéroïdes)
    • Mauvais paramétrage du système
      • Paramètres par défaut inadéquats
    • Mauvais usage du système
      • Texte libre contradictoire avec champs dédiés pour la même information
      • Modification erronée d’une prescription existante
      • Absence de rappels pour ordonnances importantes
      • Incapacité de consulter l’information nécessaire lors de la prescription
      • Fonctionnalités du logiciel mal adaptées (par exemple option de dire qu’un patient prend ses médicaments lui-même alors que ce n’est pas le cas, ordonnance conditionnelle mal configurée)

    Les points soulevés dans cet article recoupent largement ceux dont j’ai parlés dans des blogues précédents, comme quoi la littérature commence à faire ressortir des points cruciaux pour prévenir les erreurs de prescription électronique. Cependant, je trouve que les auteurs se concentrent un peu trop sur des fonctionnalités très spécifiques à des systèmes précis. Par exemple, ils discutent longuement d’une boîte pour indiquer qu’un patient prend un médicament lui-même, alors que ceci n’est pas inhérent à la prescription électronique elle-même, mais plutôt à un système particulier où cette option est mal conçue.

    Cependant, je trouve que l’article est quand même très bon et que les points qui y sont soulevés devraient faire partie de ce qui est évalué pour prévenir les erreurs lors de l’implantation de la prescription électronique.

    Réduction du nombre d’appels pour clarification avec la prescription électronique

    La saisie et la validation des ordonnances à la pharmacie d’un établissement de santé requiert régulièrement des appels aux infirmières et aux médecins afin d’obtenir des précisions sur des ordonnances mal écrites, ou dont les instructions sont contradictoires ou ambigues. Dans le contexte de la prescription électronique, les appels pour illisibilité sont (en théorie) éliminés, mais il demeure que les instructions inscrites, même en électronique, peuvent requérir des clarifications. Il peut aussi être nécessaire d’obtenir d’autres informations qui ne sont pas nécessairement incluses dans l’ordonnance comme le poids, la taille ou les allergies d’un patient. Dans le cas où des pharmaciens sont présents sur les unités de soins, les appels peuvent être dirigés vers eux afin de faciliter l’obtention de l’information, mais ce n’est pas toujours possible.

    Une étude publiée récemment s’est intéressée à ce problème. Elle avait pour objectif d’évaluer l’impact de l’ajout d’alertes dynamiques lors de la prescription électronique sur le nombre d’appels requis pour clarifier les ordonnances à la pharmacie.

    Dans un centre hospitalier et ses cliniques affiliées située au Mississippi, utilisant un dossier électronique commercial, des alertes ont été ajoutées permettant d’aviser le prescripteur au moment même où il rédige l’ordonnance lorsque:

    • Le prescripteur n’était pas indiqué.
    • La pharmacie n’était pas indiquée.
    • Les spécifications pour les ordonnances de médicament contrôlés n’étaient pas rencontrées.
    • Les instructions pour l’administration ou pour les données patient étaient trop longues ou fractionnées.
    • Les instuctions étaient à la fois entrées en champs granulaires et en texte libre.

    On voit qu’il s’agit ici d’une validation technique plutôt que clinique, mais j’ose imaginer, même si ce n’est pas clairement indiqué, que les appels pour clarification en pré-intervention étaient souvent réalisés pour ces éléments. 9 mois de données de prescription ont été extraites en pré et en post intervention, puis, en fonction d’un calcul de puissance, 301 ordonnances en pré et 301 en post ont été sélectionnées aléatoirement. Un pharmacien et une infirmière ont révisé ces prescriptions pour déterminer si un appel de clarification aurait été nécessaire. À noter, il ne s’agit donc pas ici d’un dénombrement des appels réellement effectués. Un calcul de coûts en fonction du salaire des intervenants impliqués à aussi été effectué.

    En pré intervention, 61 ordonnances sur 301 (20,3%) auraient généré un appel contre 39 sur 301 (13,0%) en post, une différence significative.  Cette réduction du nombre d’appels était associée à des coûts en temps épargné de 76$ par tranche de 100 ordonnances.

    L’article a évidemment plusieurs limites. Personnellement, les éléments de validation technique ajoutés me semblent être surtout liés à une mauvaise fonctionnalité du système de prescription électronique. Dans les systèmes que j’ai vus en pratique, les problèmes de sauts de ligne et de longueur de champs ne sont pas fréquents. Cependant, dépendamment des systèmes, l’absence de nom de prescripteur et les instructions en texte libre qui sont ambigues ou qui discordent avec les champs granulaires sont assez fréquents.

    En ce sens, je trouve qu’il s’agit d’un bon article sur une problématique pour laquelle les données manquent. La plupart de la littérature citée par les auteurs provient des pharmacies communautaires, et les différences en validation d’ordonnances par rapport à la pratique en établissement me font douter de la généralisation de ces données.

    Il y a donc ici une opportunité pour mieux quantifier ce problème en établissement de santé, et en particulier dans un contexte de prescription à la main ou avec divers systèmes et modèles de pratique.