Standards d’excellence de l’ASHP en sécurité des médicaments et en pratique pharmaceutique

Le numéro de novembre 2021 de l’AJHP contenait un article décrivant les nouveaux standards de l’ASHP pour qu’un centre soit certifié comme « centre d’excellence en sécurité des médicaments et en pratique pharmaceutique » (traduction libre de ma part). Plusieurs domaines sont abordés notamment la pratique clinique et la gestion des départements de pharmacie. Ici, je me concentrerai sur les aspects qui concernent l’informatique clinique appliquée à la pharmacie.

Dans le modèle d’organisation de l’informatique clinique aux États-Unis, il n’est pas rare que des pharmaciens et assistant-techniques ou techniciens en pharmacie travaillent dans d’autres départements que la pharmacie, notamment pour travailler sur les logiciels de dossier électronique et d’aide à la décision [je n’ai jamais réussi à trouver une bonne référence sur l’organisation de l’informatique clinique aux États-Unis, si jamais quelqu’un en trouve une, faites-moi signe !] La section 1.1.1 établit clairement que ce personnel devrait relever du département de pharmacie même si leur travail se déroule dans un autre département.

La section 5.2 du document décrit le travail de validation des ordonnances. Cette section décrit le modèle favorisé aux États-Unis de révision prospective (sauf quelques exceptions dont les situations d’urgence) de l’ensemble des ordonnances. La section est intéressante car elle présuppose en quelque sorte que la validation d’ordonnances se passe dans un logiciel de dossier électronique complet et décrit également des standards en matière de télépharmacie et de validation à distance.

Les sections 11 et 12 concernent directement l’informatique clinique, la technologie et l’automatisation. Fait intéressant, il est mentionné qu’un dossier électronique complet, ou un système de pharmacie distinct intégré au sein d’un continuum d’applications cliniques interfacées, sont tous deux des choix valables. Il est mentionné que les pharmaciens et le personnel de la pharmacie doivent maintenir leur compétence dans l’utilisation des outils informatiques liés à leur travail.

En ce qui a trait aux fonctionnalités avancées des systèmes cliniques, il est attendu que les pharmaciens participent à l’élaboration des lignes directrices et aux ensembles d’ordonnances (order sets) dans les logiciels de prescription, de même qu’à l’ensemble des décisions quand à la standardisation et à la configuration des systèmes touchant aux médicaments. Ils devraient aussi contribuer aux décisions entourant la configuration des systèmes d’aide à la décision.

Les données des systèmes cliniques devraient être disponibles pour les gestionnaires des départements de pharmacie à des fins d’analytique avancée et d’optimisation de la pratique.

La section 12 décrit les bonnes pratiques entourant les code-barres, les cabinets automatisés, et la technologie utilisée pour la préparation des médicament dont les logiciels d’assistance aux préparations stériles.

Je ne retranscrirai pas ici chacun des points mentionnés dans ce document, mais je pense que les pharmaciens travaillant en informatique clinique devraient définitivement le lire au complet car il offre une perspective sur ce qui est considéré comme « l’excellence » aux États-Unis, où les départements de pharmacie travaillent avec de la technologie d’automatisation et des systèmes cliniques avancés depuis plus de 10 ans. Il faut tout de même garder en tête que cet article est écrit avec la perspective américaine sur le rôle du pharmacien et dans le contexte où la pénurie de pharmaciens est beaucoup moins importante dans ce pays.

Assistance aux préparations stériles intégrée au dossier électronique

Les logiciels d’assistance aux préparations stériles (appelés d’abord en anglais IV Workflow Software puis Technology-Assisted WorkFlow (TAWF), qui semble être le terme favorisé actuellement) font régulièrement l’objet de publications. Dans le numéro de juillet 2021 de l’AJHP, un article décrivait l’implantation d’une fonctionnalité d’assistance aux préparations intégrée au logiciel de dossier électronique déjà en place dans un centre, comparativement aux publications décrivant généralement des produits séparés et interfacés au dossier principal.

L’étude a été réalisée dans une institution américaine comportant 4 pharmacies desservant des cliniques d’infusion ambulatoires en oncologie. Un logiciel distinct du dossier électronique était déjà en place pour la vérification des préparations à l’aide de photos. Cependant, le dossier électronique lui même était utilisé pour la documentation des ingrédients et la traçabilité de la préparation, afin de supporter les processus de facturation. Une transition a été menée en 2019 vers un système de vérification des préparations avec photos intégrée au logiciel de dossier électronique. Les auteurs décrivent les avantages de cette transition: notamment la réduction du recours à la saisie manuelle d’information dans le système séparé (on comprend que le système était peu ou pas interfacé avec le dossier électronique) et une réduction de coût annuelle d’environ 36 000$ américains (on a donc une idée du coût annuel d’un tel système). Le nouveau système a requis l’installation de postes informatiques complets ainsi que des caméras dédiées à chaque hotte stérile plutôt que les tablettes précédemment utilisées. Des ajustements ont été nécessaires aux processus de travail et à la configuration des flux de travail de vérification des préparations dans le logiciel de dossier électronique. Il est intéressant de noter que la vérification des préparations pour les quatre pharmacies était réalisée à distance de manière centralisée dans une des quatre pharmacies. Une impression d’une étiquette finale était déclenchée par la vérification à distance, signalant que la préparation avait été vérifiée et pouvait être dispensée.

La transition semble s’être bien passée, requérant seulement 2 jours de support sur place. Cependant, des difficultés techniques ont été constatées avec la prise de photos requérant l’achat de composantes techniques additionnelles, en sus de difficultés liées au flux de travail de vérification qui ont nécessité des ajustements à la configuration des files de vérification.

Cette transition a été évaluée à l’aide d’un devis pré-post avec une période 3 mois avant l’implantation et 3 mois après l’implantation. Les durées des étapes de préparation ainsi que les taux de détection d’erreurs ont été comparées. 4188 préparations stériles ont été réalisées avant la transition et 3313 après. La durée entre l’impression initiale de l’étiquette de préparation et la complétion de la préparation était plus grande avec le système intégré (16,8 vs 19,3 minutes). La durée totale de la production jusqu’à la fin de la vérification était de 23,1 minutes avec le système séparé et 26,7 minutes avec le système intégré; cependant les auteurs ont noté une diminution des temps à chaque mois après la transition, on peut donc déduire qu’une période d’attente avant la réalisation de la période post aurait été préférable pour permettre aux habitudes de s’installer avec le nouveau système et ainsi refléter un peu mieux la performance en vie réelle. Les taux d’interception d’erreurs étaient de 0,72% avec le système externe et 0,88% avec le système intégré, ce que les auteurs ont jugé comparable.

Je trouve l’étude intéressante car elle démontre l’impact relativement mineur (essentiellement des enjeux techniques facilement surmontés) d’une transition d’un système externe à un système intégré. La gestion du changement liée à cette transition est bien décrite dans l’article. Bien que l’enjeu de la retranscription manuelle d’un système à l’autre ne soit pas abordé à fond dans l’article, il me semble que l’élimination de cette étape est un avantage majeur qui en soi justifie pleinement la transition vers le système intégré, dans l’optique du circuit du médicament en boucle fermée. Évidemment, ce genre d’avantage peut cependant devenir un frein à l’interopérabilité; on peut imaginer certains développeurs de dossiers électroniques refusant la mise en place d’interfaces vers des systèmes externes dans le but de forcer l’utilisation de leurs fonctionnalités intégrées. Il est dommage que l’article n’aborde pas les raisons de l’absence d’interface (impossibilité technique ? coûts ? manque de collaboration des fournisseurs ?).

Effets d’un système de préparations stériles avec gravimétrie sur la détection d’erreurs et le temps de préparation

Un nouvel article sur les systèmes d’assistance aux préparations stériles avec gravimétrie est paru dans l’AJHP du mois de juillet. Cet article vient du même centre ayant décrit en 2018 l’implantation du même système dans le contexte des produits stériles dangereux. Les auteurs affirment qu’il s’agit ici de la première étude sur un tel système dans le contexte des préparations stériles non dangereuses. Une méthode très similaire à leur autre étude a été utilisée. À noter, le dernier auteur est en conflit d’intérêts avec le manufacturier du système étudié, ce qui teinte négativement cette étude.

L’étude a eu lieu dans un centre académique américain de 803 lits avec des patients adultes et pédiatriques. Le centre a implanté le système avec gravimétrie pour remplacer une technique de préparation sans technologie. Les auteurs parlent d’un système « volumétrique » avant l’implantation. Ceci pourrait être mal interprété en croyant que le système remplacé était un logiciel avec prise de photos ou de vidéos. En réalité, le centre utilisait la méthode « syringe pull-back » (je n’ai pas de bonne traduction française), cette technique qui semble prévalente aux États-Unis (je n’ai jamais entendu parler de ça au Québec !) où le technicien préparateur ramène le piston de la seringue du produit injecté dans un contenant au volume pré-injection pour que le pharmacien vérifie le volume. On comprend donc ici le risque considérable d’erreurs de préparation. Il était donc facile pour cette étude de détecter une amélioration puisque le point de départ était loin d’être optimal.

Les temps de préparation des produits stériles en période pré ont été compilés sur des formulaires papier à l’aide d’un horodateur durant une période de 14 jours. Les données sur les taux d’erreurs durant la période pré ont été compilées lors d’une étude précédente réalisée en 2015, encore une fois avec des formulaires papier. Après l’implantation, les données étaient extraites du logiciel de préparation. Les taux d’erreurs de préparation ont été comparés entre la phase pré et les 90 jours post-implantation, et les temps de préparation ont été comparés entre la période pré et 90 jours et 180 jours post. Les erreurs ont été catégorisées en erreurs de dose et erreurs de produit/diluant. Point positif à noter, les erreurs de produits détectées par le système ont été exclues par les chercheurs si elles étaient sans conséquence, comme par exemple la sélection d’une fiole non ouverte du bon produit pour lequel une fiole ouverte était disponible (étais-ce ce genre de détection qui propulsait à la hausse les taux d’erreurs de sélection de produit dans d’autres études récemment publiées ?) Des opinions par rapport au produit et au flot de travail ont aussi été collectés.

Autre point important à noter, seulement 15 produits ont été inclus dans l’étude. On ignore combien de types de préparations sont faites dans cette unité de production stérile et on ignore quels sont ces 15 produits.

Pour les taux d’erreurs, selon les auteurs, en phase pré, 116 686 préparations ont été incluses, avec 0,12% d’erreurs de produit ou de diluant, et 0,13% d’erreurs de dose. En période post, 5195 préparations ont été incluses avec 6366 erreurs détectées par le logiciel dont 2176 incluses dans l’étude, avec 0,79% d’erreurs de produit et 41,23% d’erreurs de dose. Les différences de taux d’erreurs détectées sont statistiquement significatives.

J’ai de la difficulté à comprendre les chiffres présentés. Les auteurs affirment que seuls 15 produits ont été inclus en pré comme en post, et les deux périodes étaient de 90 jours pour la détection d’erreurs, alors comment est-il possible que 22 fois plus de préparations aient été compilées en pré ? L’article n’apporte pas de clarification sur ce point. Autre élément surprenant, le système a détecté en moyenne plus d’une erreur à chaque préparation ! Dans le contexte de l’aide à la décision, on parle sans cesse de alert fatigue. Si un système de ce type génère en moyenne plus d’une alerte à chaque dose, il me semble qu’il y a un risque de désensibilisation. Aussi, un taux d’erreurs de dose de 41% me semble tout simplement aberrant. Dans la discussion, les auteurs expliquent que certaines alertes catégorisées comme erreurs de dose dans le système n’en sont pas réellement. Ils parlent aussi du problème récurrent, rapporté dans toutes les études sur ce système à ma connaissance, de l’incapacité de bien mesurer les petits volumes par gravimétrie. Enfin, l’analyse statistique n’a tenté aucune évaluation ou correction pour le fait que près de 3 ans séparent les deux phases; d’autres changements dans la pratique ont-ils eu lieu qui pourraient expliquer ces différences ?

En ce qui a trait au temps, on constate une augmentation du temps nécessaire pour préparer le matériel requis et du temps de préparation avec le système, ainsi qu’une diminution du temps de vérification par le pharmacien, mais une augmentation du temps total par préparation. Évidemment, il est difficile d’interpréter ces chiffres puisque la durée d’une préparation dépend grandement de sa complexité et on ignore quelles préparations étaient incluses dans l’étude.

En bref, il s’agit d’une autre étude sur les systèmes d’assistance aux préparations stériles, et d’une autre sur les systèmes avec gravimétrie, mais ces études continuent d’être affectées par des problèmes de méthode et des résultats étranges rendent difficile la généralisation de leurs conclusions. En ce qui a trait à la gravimétrie, on n’offre toujours aucune solution au problème des petits volumes, et il n’y a toujours aucune donnée démontrant l’impact clinique du gain de précision dans les doses sensé être amené par un tel système.